HomeScience and NatureRecognition of growth antigens with immunopeptidomics

Recognition of growth antigens with immunopeptidomics

- Advertisement -spot_img
  • 1.

    Kloetzel, P. M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179–187(2001).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 2.

    Coulie, P. G. et al. An altered intron series codes for an antigenic peptide acknowledged by cytolytic T lymphocytes on a human cancer malignancy. Proc. Natl Acad. Sci. U.S.A.92, 7976–7980(1995).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 3.

    Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and discussion. Nat. Rev. Immunol.15, 203–216(2015).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 4.

    Yewdell, J. W., Reits, E. & Neefjes, J. Making sense of mass damage: quantitating MHC class I antigen discussion. Nat. Rev. Immunol. 3, 952–961(2003).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 5.

    Schumacher, T. N., Scheper, W. & Kvistborg, P. Cancer neoantigens. Annu. Rev. Immunol.37, 173–200(2019).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 6.

    Bianchi, V., Harari, A. & Coukos, G. Neoantigen-specific adoptive cell treatments for cancer: making T-cell items more individual. Front. Immunol.11, 1215 (2020).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 7.

    Curran, M. A. & Glisson, B. S. New expect restorative cancer vaccines in the period of immune checkpoint modulation. Annu. Rev. Med.70, 409–424(2019).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 8.

    Haen, S. P., Löffler, M. W., Rammensee, H.-G. & Brossart, P. Towards brand-new horizons: characterization, category and ramifications of the tumour antigenic collection. Nat. Rev. Clin. Oncol.17, 595–610(2020).

    PubMed.
    Post.
    PubMed Central.

    Google Scholar.

  • 9.

    Kruger, S. et al. Advances in cancer immunotherapy 2019: newest patterns. J. Exp. Clin. Cancer Res.38, 268 (2019).

    PubMed.
    PubMed Central.
    Short article.

    Google Scholar.

  • 10

    Christofi, T., Baritaki, S., Falzone, L., Libra, M. & Zaravinos, A. Current viewpoints in cancer immunotherapy. Cancers (Basel)11, 1472 (2019).

    Article.
    CAS.

    Google Scholar.

  • 11

    Laumont, C. M. et al. Worldwide proteogenomic analysis of human MHC class I-associated peptides originated from non-canonical reading frames. Nat. Commun. 7, 10238 (2016).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 12

    Sebestyen, E. et al. Massive analysis of genome and transcriptome modifications in several growths reveals unique cancer-relevant splicing networks. Genome Res.26, 732–744(2016).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 13

    Zhao, Q. et al. Proteogenomics reveals a huge collection of shared tumor-specific antigens in ovarian cancer. Cancer Immunol. Res. 8, 544–555(2020).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 14

    Ouspenskaia, T. et al. Countless unique unannotated proteins broaden the MHC I immunopeptidome in cancer. Preprint at bioRxiv https://doi.org/101101/20200212945840(2020).

  • 15

    Chen, J. et al. Prevalent practical translation of noncanonical human open reading frames. Science367, 1140–1146(2020).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 16

    Ilyas, S. & Yang, J. C. Landscape of growth antigens in T cell immunotherapy. J. Immunol.195, 5117–5122(2015).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 17

    Caballero, O. L. & Chen, Y. T. Cancer/testis (CT) antigens: prospective targets for immunotherapy. Cancer Sci.100, 2014–2021(2009).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 18

    Tio, D. et al. Expression of cancer/testis antigens in cutaneous cancer malignancy: a methodical evaluation. Melanoma Res.29, 349–357(2019).

    PubMed.
    Short article.
    PubMed Central.

    Google Scholar.

  • 19

    Schooten, E., Di Maggio, A., van Bergen En Henegouwen, P. M. P. & Kijanka, M. M. MAGE-A antigens as targets for cancer immunotherapy. Cancer Treat. Rev.67, 54–62(2018).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 20

    D’Angelo, S. P. et al. Antitumor activity related to extended determination of adoptively moved NY-ESO-1 c259 T cells in synovial. Sarcoma 8, 944–957(2018).

    Google Scholar.

  • 21

    Rapoport, A. P. et al. NY-ESO-1– particular TCR– crafted T cells moderate continual antigen-specific antitumor results in myeloma. Nat. Medication.21, 914–921(2015).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 22

    Robbins, P. F. et al. A pilot trial utilizing lymphocytes genetically crafted with an NY-ESO-1– reactive T-cell receptor: long-lasting follow-up and associates with reaction. Clin. Cancer Res.21, 1019–1027(2015).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 23

    Laumont, C. M. & Perreault, C. Exploiting non-canonical translation to recognize brand-new targets for T cell-based cancer immunotherapy. Cell. Mol. Life Sci.75, 607–621(2018).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 24

    Moreau-Aubry, A. et al. A processed pseudogene codes for a brand-new antigen acknowledged by a CD8 T cell clone on cancer malignancy. J. Exp. Medication.191, 1617–1623(2000).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 25

    Li, L.-J., Leng, R.-X., Fan, Y.-G., Pan, H.-F. & Ye, D.-Q. Translation of noncoding RNAs: concentrate on lncRNAs, pri-miRNAs, and circRNAs. Exp. Cell Res.361, 1– 8 (2017).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 26

    Charpentier, M. et al. IRES-dependent translation of the long non coding RNA meloe in cancer malignancy cells produces the most immunogenic MELOE antigens. Oncotarget 7, 59704–59713(2016).

    PubMed.
    PubMed Central.
    Short article.

    Google Scholar.

  • 27

    Roulois, D. et al. DNA-demethylating representatives target colorectal cancer cells by causing viral mimicry by endogenous records. Cell 162, 961–973(2015).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 28

    Chiappinelli, K. B. et al. Hindering DNA methylation triggers an interferon reaction in cancer through dsRNA consisting of endogenous retroviruses. Cell162, 974–986(2015).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 29

    Attermann, A. S., Bjerregaard, A. M., Saini, S. K., Gronbaek, K. & Hadrup, S. R. Human endogenous retroviruses and their ramification for immunotherapeutics of cancer. Ann. Oncol.29, 2183–2191(2018).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 30

    Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science304, 587–590(2004).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 31

    Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes acknowledge epitopes formed by peptide blend. Science351, 711–714(2016).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 32

    Yewdell, J. W. & Holly, J. DRiPs get molecular. Curr. Opin. Immunol.64, 130–136(2020).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 33

    Welters, M. J. et al. Induction of tumor-specific CD4 and CD8 T-cell resistance in cervical cancer clients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin. Cancer Res.14, 178–187(2008).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 34

    Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene treatment. J. Immunother.36, 133–151(2013).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 35

    Skipper, J. C. et al. Mass-spectrometric examination of HLA-A *0201- associated peptides determines dominant naturally processed kinds of CTL epitopes from MART-1 and gp 100. Int J. Cancer 82, 669–677(1999).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 36

    Wolf, B. et al. Security and tolerability of adoptive cell treatment in cancer. Drug Saf.42, 315–334(2019).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 37

    Purcell, A. W., Ramarathinam, S. H. & Ternette, N. Mass spectrometry-based recognition of MHC-bound peptides for immunopeptidomics. Nat. Protoc.14, 1687–1707(2019).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 38

    Caron, E. et al. Analysis of significant histocompatibility complex (MHC) immunopeptidomes utilizing mass spectrometry. Mol. Cell. Proteom.14, 3105–3117(2015).

    Article.
    CAS.

    Google Scholar.

  • 39

    Ritz, D., Kinzi, J., Neri, D. & Fugmann, T. Data-independent acquisition of HLA class I peptidomes on the Q exactive mass spectrometer platform. Proteomics17, 1700177 (2017).

    Article.
    CAS.

    Google Scholar.

  • 40

    Gillet, L. C. et al. Targeted information extraction of the MS/MS spectra produced by data-independent acquisition: a brand-new idea for constant and precise proteome analysis. Mol. Cell. Proteom.11, O111016717(2012).

    Article.
    CAS.

    Google Scholar.

  • 41

    Brunner, A.-D. et al. Ultra-high level of sensitivity mass spectrometry measures single-cell proteome modifications upon perturbation. Preprint at bioRxiv2020.20122022423933(2020).

  • 42

    Tsou, C. C. et al. DIA-Umpire: extensive computational structure for data-independent acquisition proteomics. Nat. Approaches12, 258–264(2015).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 43

    Muntel, J. et al. Going Beyond 10 000 determined and measured proteins in a single run by enhancing existing LC-MS instrumentation and information analysis technique. Mol. Omics15, 348–360(2019).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 44

    Gessulat, S. et al. Prosit: proteome-wide forecast of peptide tandem mass spectra by deep knowing. Nat. Approaches16, 509–518(2019).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 45

    Croft, N. P. et al. Kinetics of antigen expression and epitope discussion throughout virus infection. PLoS Pathog. 9, e1003129(2013).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 46

    Hassan, C. et al. Precise quantitation of MHC-bound peptides by application of isotopically identified peptide MHC complexes. J. Proteom.109, 240–244(2014).

    Article.
    CAS.

    Google Scholar.

  • 47

    Croft, N. P., Purcell, A. W. & Tscharke, D. C. Quantifying epitope discussion utilizing mass spectrometry. Mol. Immunol.68, 77–80(2015).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 48

    Tan, C. T., Croft, N. P., Dudek, N. L., Williamson, N. A. & Purcell, A. W. Direct quantitation of MHC-bound peptide epitopes by picked response tracking. Proteomics11, 2336–2340(2011).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 49

    Kapp, E. A. et al. An examination, contrast, and precise benchmarking of numerous openly readily available MS/MS search algorithms: level of sensitivity and uniqueness analysis. Proteomics 5, 3475–3490(2005).

  • 50

    Kapp, E. & Schutz, F. Overview of tandem mass spectrometry (MS/MS) database search algorithms. Curr. Protoc. Protein Sci.49, 25.2.1–252.19(2007).

    Article.

    Google Scholar.

  • 51

    Elias, J. E. & Gygi, S. P. Target-decoy search technique for increased self-confidence in massive protein recognitions by mass spectrometry. Nat. Approaches 4, 207–214(2007).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 52

    Zhang, J. et al. PEAKS DB: de novo sequencing helped database look for delicate and precise peptide recognition. Mol. Cell. Proteom.11, M111010587(2012).

    Article.
    CAS.

    Google Scholar.

  • 53

    Shan, P. & Tran, H. Integrating database search and de novo sequencing for immunopeptidomics with DIA method. J. Biomol. Tech.30, S23(2019).

    PubMed Central.

    Google Scholar.

  • 54

    Faridi, P., Purcell, A. W. & Croft, N. P. In immunopeptidomics we require a sniper rather of a shotgun. Proteomics18, e1700464(2018).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 55

    Thompson, A. et al. Tandem mass tags: an unique metrology technique for relative analysis of complex protein mixes by MS/MS. Anal. Chem.75, 1895–1904(2003).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 56

    Pfammatter, S. et al. Extending the comprehensiveness of immunopeptidome analyses utilizing isobaric peptide labeling. Anal. Chem.92, 9194–9204(2020).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 57

    Ramarathinam, S. H. et al. A peptide-signal amplification method for the detection and recognition of neoepitope discussion on cancer biopsies. Preprint at bioRxiv https://doi.org/101101/20200612145276(2020).

  • 58

    Stopfer, L. E., Mesfin, J. M., Joughin, B. A., Lauffenburger, D. A. & White, F. M. Multiplexed relative and outright quantitative immunopeptidomics exposes MHC I collection changes caused by CDK4/6 inhibition. Nat. Commun.11, 2760 (2020).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 59

    d’Atri, V. et al. Including a brand-new separation measurement to MS and LC– MS: what is the energy of ion movement spectrometry? J. Sep. Sci. 41,20–67(2018).

    PubMed.

    Short article.
    CAS. PubMed Central. Google Scholar.

  • 60

    Pfammatter, S. et al. An unique differential ion movement gadget broadens the depth of proteome protection and the level of sensitivity of multiplex proteomic measurements. Mol. Cell. Proteom.17, 2051–2067(2018).

    Article.
    CAS.

    Google Scholar.

  • 61

    Pfammatter, S., Bonneil, E. & Thibault, P. Improvement of quantitative measurements in multiplex proteomics utilizing high-field uneven waveform spectrometry. J. Proteome Res.15, 4653–4665(2016).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 62

    Meier, F. et al. Online parallel accumulation-serial fragmentation (PASEF) with an unique caught ion movement mass spectrometer. Mol. Cell. Proteom.17, 2534–2545(2018).

    Article.
    CAS.

    Google Scholar.

  • 63

    Nesvizhskii, A. I. Proteogenomics: ideas, applications and computational techniques. Nat. Techniques11, 1114–1125(2014).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 64

    Zhang, M. et al. RNA modifying obtained epitopes operate as cancer antigens to generate immune actions. Nat. Commun. 9, 3919 (2018).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 65

    Wei, Z. et al. The landscape of growth blend neoantigens: a pan-cancer. Anal. iScience21, 249–260(2019).

    Article.

    Google Scholar.

  • 66

    Löffler, M. W. et al. Multi-omics discovery of exome-derived neoantigens in hepatocellular cancer. Genome Med.11, 28 (2019).

    PubMed.
    PubMed Central.
    Short article.

    Google Scholar.

  • 67

    Kalaora, S. et al. Usage of HLA peptidomics and entire exome sequencing to determine human immunogenic neo-antigens. Oncotarget 7, 5110–5117(2016).

    PubMed.
    PubMed Central.
    Short article.

    Google Scholar.

  • 68

    Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J. & Mann, M. Mass spectrometry of human leukocyte antigen class I peptidomes exposes strong impacts of protein abundance and turnover on antigen discussion. Mol. Cell. Proteom.14, 658–673(2015).

    Article.
    CAS.

    Google Scholar.

  • 69

    Khodadoust, M. S. et al. Antigen discussion profiling exposes acknowledgment of lymphoma immunoglobulin neoantigens. Nature543, 723–727(2017).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 70

    Bassani-Sternberg, M. et al. Direct recognition of medically pertinent neoepitopes provided on native human cancer malignancy tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 71

    Binz, P. A. et al. Proteomics Standards Initiative extended FASTA format. J. Proteome Res.18, 2686–2692(2019).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 72

    Eng, J. K. & Deutsch, E. W. Extending comet for international amino acid version and post-translational adjustment analysis utilizing the PSI extended FASTA format. Proteomics72, e1900362(2020).

    Article.
    CAS.

    Google Scholar.

  • 73

    Elias, J. E. & Gygi, S. P. Target-decoy search method for mass spectrometry-based proteomics. Methods Mol. Biol.604, 55–71(2010).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 74

    Gupta, N., Bandeira, N., Keich, U. & Pevzner, P. A. Target-decoy technique and incorrect discovery rate: when things might fail. J. Am. Soc. Mass Spectrom.22, 1111–1120(2011).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 75

    Tanner, S. et al. Improving gene annotation utilizing peptide mass spectrometry. Genome Res.17, 231–239(2007).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 76

    Chong, C. et al. Integrated proteogenomic deep sequencing and analytics precisely recognize non-canonical peptides in growth immunopeptidomes. Nat. Commun.11, 1293 (2020).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 77

    Laumont, C. M. et al. Noncoding areas are the primary source of targetable tumor-specific antigens. Sci. Transl. Medication.10, eaau5516(2018).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 78

    Smart, A. C. et al. Intron retention gives neoepitopes in cancer. Nat. Biotechnol.36, 1056–1058(2018).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 79

    Attig, J. et al. LTR retroelement growth of the human cancer transcriptome and immunopeptidome exposed by de novo records assembly. Genome Res.29, 1578–1590(2019).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 80

    Kong, Y. et al. Transposable aspect expression in growths is related to immune seepage and increased antigenicity. Nat. Commun.10, 5228 (2019).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 81

    Shraibman, B., Melamed Kadosh, D., Barnea, E. & Admon, A. HLA peptides stemmed from growth antigens caused by inhibition of DNA methylation for advancement of drug-facilitated immunotherapy. Mol. Cell. Proteom.15, 3058–3070(2016).

    Article.
    CAS.

    Google Scholar.

  • 82

    Calviello, L. et al. Spotting actively equated open reading frames in ribosome profiling information. Nat. Techniques13, 165–170(2016).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 83

    Erhard, F. et al. Enhanced Ribo-seq makes it possible for recognition of puzzling translation occasions. Nat. Approaches15, 363–366(2018).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 84

    Ingolia, N. T. et al. Ribosome profiling exposes prevalent translation beyond annotated protein-coding genes. Cell Rep. 8, 1365–1379(2014).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 85

    Slavoff, S. A. et al. Peptidomic discovery of brief open reading frame– encoded peptides in human cells. Nat. Chem. Biol. 9, 59–64(2013).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 86

    Sarkizova, S. et al. A big peptidome dataset enhances HLA class I epitope forecast throughout the majority of the human population. Nat. Biotechnol.38, 199–209(2020).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 87

    Abelin, J. G. et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells allows more precise epitope forecast. Immunity46, 315–326(2017).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 88

    Warren, E. H. et al. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science313, 1444–1447(2006).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 89

    Dalet, A. et al. An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc. Natl Acad. Sci. U.S.A.108, E323– E331(2011).

    PubMed.
    PubMed Central.
    Short article.

    Google Scholar.

  • 90

    Michaux, A. et al. An entwined antigenic peptide consisting of a single entwined amino acid is produced in the proteasome by reverse splicing of a longer peptide piece followed by cutting. J. Immunol.192, 1962–1971(2014).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 91

    Hanada, K., Yewdell, J. W. & Yang, J. C. Immune acknowledgment of a human kidney cancer antigen through post-translational protein splicing. Nature427, 252–256(2004).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 92

    Liepe, J. et al. A big portion of HLA class I ligands are proteasome-generated entwined peptides. Science354, 354–358(2016).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 93

    Faridi, P. et al. A subset of HLA-I peptides are not genomically templated: proof for cis- and trans-spliced peptide ligands. Sci. Immunol. 3, eaar3947(2018).

    PubMed.
    Post. PubMed Central. Google Scholar.

  • 94

    Liepe, J., Sidney, J., Lorenz, F. K. M., Sette, A. & Mishto, M. Mapping the MHC class I– entwined immunopeptidome of cancer cells. Cancer Immunol. Res. 7, 62–76(2019).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 95

    Paes, W. et al. Contribution of proteasome-catalyzed peptide cis– splicing to viral targeting by CD8 T cells in HIV-1 infection. Proc. Natl Acad. Sci. U.S.A.116, 24748–24759(2019).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 96

    Faridi, P. et al. Entwined peptides and cytokine-driven modifications in the immunopeptidome of cancer malignancy. Cancer Immunol. Res. 8, 1322–1334(2020).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 97

    Mylonas, R. et al. Approximating the contribution of proteasomal entwined peptides to the HLA-I ligandome. Mol. Cell. Proteom.17, 2347–2357(2018).

    Article.
    CAS.

    Google Scholar.

  • 98

    Rolfs, Z., Solntsev, S. K., Shortreed, M. R., Frey, B. L. & Smith, L. M. Global recognition of post-translationally entwined peptides with neo-fusion. J. Proteome Res.18, 349–358(2019).

    PubMed.
    CAS.
    PubMed Central.

    Google Scholar.

  • 99

    Erhard, F., Dölken, L., Schilling, B. & Schlosser, A. Identification of the puzzling HLA-I immunopeptidome. Cancer Immunol. Res. 8, 1018–1026(2020).

    PubMed.
    Post.
    CAS.
    PubMed Central.

    Google Scholar.

  • 100

    Vigneron, N., Ferrari, V., Stroobant, V., Abi Habib, J. & Van den Eynde, B. J. Peptide splicing by the proteasome. J. Biol. Chem.292, 21170–21179(2017).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 101

    Dalet, A., Vigneron, N., Stroobant, V., Hanada, K. & Van den Eynde, B. J. Splicing of far-off peptide pieces takes place in the proteasome by transpeptidation and produces the entwined antigenic peptide originated from fibroblast development factor-5. J. Immunol.184, 3016–3024(2010).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 102

    Henry, V. J., Bandrowski, A. E., Pepin, A. S., Gonzalez, B. J. & Desfeux, A. OMICtools: an useful directory site for multi-omic information analysis. Database (Oxford)2014, bau069(2014).

    Article.
    CAS.

    Google Scholar.

  • 103

    Afgan, E. et al. The Galaxy platform for available, reproducible and collective biomedical analyses: 2018 upgrade. Nucleic Acids Res.46, W537– W544(2018).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 104

    Nesvizhskii, A. I. et al. Dynamic spectrum quality evaluation and iterative computational analysis of shotgun proteomic information: towards more effective recognition of post-translational adjustments, series polymorphisms, and unique peptides. Mol. Cell. Proteom. 5, 652–670(2006).

    Article.
    CAS.

    Google Scholar.

  • 105

    Andreatta, M. et al. MS-Rescue: a computational pipeline to increase the quality and yield of immunopeptidomics experiments. Proteomics19, e1800357(2019).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 106

    Rolfs, Z., Müller, M., Shortreed, M. R., Smith, L. M. & Bassani-Sternberg, M. Comment on ‘A subset of HLA-I peptides are not genomically templated: proof for cis- and trans-spliced peptide ligands’. Sci. Immunol. 4, eaaw1622(2019).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 107

    McGranahan, N. & Swanton, C. Clonal heterogeneity and growth development: past, present, and the future. Cell168, 613–628(2017).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 108

    Marcu, A. et al. The HLA Ligand Atlas. A resource of natural HLA ligands provided on benign tissues. J. Immunother. Cancer 9, e002071(2019).

    Article.

    Google Scholar.

  • 109

    Schatton, T. et al. Recognition of cells starting human cancer malignancies. Nature451, 345–349(2008).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 110

    Lang, D., Mascarenhas, J. B. & Shea, C. R. Melanocytes, melanocyte stem cells, and cancer malignancy stem cells. Clin. Dermatol.31, 166–178(2013).

    PubMed.
    PubMed Central.
    Post.

    Google Scholar.

  • 111

    Kassiotis, G. & Stoye, J. P. Immune reactions to endogenous retroelements: taking the bad with the excellent. Nat. Rev. Immunol.16, 207–219(2016).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 112

    Rycaj, K. et al. Cytotoxicity of human endogenous retrovirus K– particular T cells towards autologous ovarian. Cancer Cells21, 471–483(2015).

    CAS.

    Google Scholar.

  • 113

    Saini, S. K. et al. Human endogenous retroviruses form a tank of T cell targets in hematological cancers. Nat. Commun.11, 5660 (2020).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 114

    Mullins, C. S. & Linnebacher, M. Endogenous retrovirus series as an unique class of tumor-specific antigens: an example of HERV-H env encoding strong CTL epitopes. Cancer Immunol. Immun.61, 1093–1100(2012).

    Article.
    CAS.

    Google Scholar.

  • 115

    Tu, X. et al. Human leukemia antigen-A *0201- limited epitopes of human endogenous retrovirus W household envelope (HERV-W env) cause strong cytotoxic T lymphocyte reactions. Virol. Sin.32, 280–289(2017).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 116

    Belgnaoui, S. M., Gosden, R. G., Semmes, O. J. & Haoudi, A. Human LINE-1 retrotransposon causes DNA damage and apoptosis in cancer cells. Cancer Cell Int. 6, 13 (2006).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 117

    Scott, E. C. et al. A hot L1 retrotransposon averts somatic repression and starts human colorectal cancer. Genome Res.26, 745–755(2016).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 118

    Ott, P. A. et al. An immunogenic individual neoantigen vaccine for clients with cancer malignancy. Nature547, 217–221(2017).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 119

    Sahin, U. et al. Individualized RNA mutanome vaccines set in motion poly-specific healing resistance versus cancer. Nature547, 222–226(2017).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 120

    Ebrahimi-Nik, H. et al. Mass spectrometry driven expedition exposes subtleties of neoepitope-driven growth rejection. JCI Insight 5, e129152(2019).

    Article.

    Google Scholar.

  • 121

    Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer19, 465–478(2019).

    PubMed.
    PubMed Central.
    Short article.
    CAS.

    Google Scholar.

  • 122

    Jackson, R. et al. The translation of non-canonical open reading frames manages mucosal resistance. Nature564, 434–438(2018).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 123

    Muller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen discussion exposed by human leukocyte antigen ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367 (2017).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 124

    Schittenhelm, R. B. et al. An extensive analysis of constitutive naturally processed and provided HLA-C *04: 01 (Cw4)- particular peptides. Tissue Antigen.83, 174–179(2014).

    Article.
    CAS.

    Google Scholar.

  • 125

    Schuster, H. et al. The immunopeptidomic landscape of ovarian cancers. Proc. Natl Acad. Sci. U.S.A.114, E9942– E9951(2017).

    PubMed.
    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • 126

    Sarkizova, S. et al. A big peptidome dataset enhances HLA class I epitope forecast throughout the majority of the human population. Nat. Biotechnol.38, 199–209(2020).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 127

    Keskin, D. B. et al. Neoantigen vaccine produces intratumoral T cell reactions in Phase Ib glioblastoma trial. Nature565, 234–239(2019).

    PubMed.
    Short article.
    CAS.
    PubMed Central.

    Google Scholar.

  • 128

    Shraibman, B. et al. Recognition of growth antigens amongst the HLA peptidomes of glioblastoma growths and plasma. Mol. Cell. Proteom.17, 2132–2145(2018).

    Article.
    CAS.

    Google Scholar.

  • 129

    Ternette, N. et al. Immunopeptidomic profiling of HLA-A2-positive triple unfavorable breast cancer recognizes prospective immunotherapy target antigens. Proteomics18, 1700465 (2018).

    PubMed Central.
    Post.
    CAS.

    Google Scholar.

  • - Advertisement -spot_img
    - Advertisement -spot_img
    Stay Connected
    16,985FansLike
    2,458FollowersFollow
    61,453SubscribersSubscribe
    Must Read
    - Advertisement -spot_img
    Related News
    - Advertisement -spot_img

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here